
Lecture 6

· Radiation of a moving change kout .)
- physical properties

· Mutipole expansion
- Electrostaties

-Multipole moments
- Magnetostatio
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moving charge : /R-1 e is the

distance to the charge at moment +

(for constant velocity).
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· Non-relativistie limit :
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In the relativistic case it is

important to distinguish the radiation

emitted in the frame of the particle :
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Multipole Expansion

· Review of multi-dimentional Taylor
formula
two variables :
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can "Taylor expand" the
internal structure.

P(x)=
Let us start by Taylor expanding the

Green's lanction :
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T is symetric and traceless :
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where tensorA contains at least

one knower Fij
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We would like to expand the

expression

fd at large

but solar it is not clear

which integrals of(SCI) Xi ... Xin
will or will not contribute because

of the structure of ↑(5)
·

We then use the following trick :
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Let us derive the corresponding
electric fields:
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Magnetostatics
Since the Green's lunction for
the rector potential is very similar
we can use the similar techniques :

↑ (* ) = tf
We will not derive the all-orders

expression , but just work at the

leading orders :
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↑ xid; 5 j =0 = (0; (xi5j) -
V v

- 5: = 0 = Si =

No magnetic monopoles ! B =0

We can also show that

(dx(xi]
j + xjji) = 0

W

Dipole term :
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↑ (x)~M(x) = magnetisation ->
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