Lecture 6

- Physical properties
- · Mutipole expansion
 - Electrostectics
 - Multipole moments
 - Magnetostaties

From Lecture 5:
$$\frac{1}{2}$$

$$= \frac{1}{\sqrt{N^2}} = \frac{1}{\sqrt$$

$$\vec{R} = \vec{x} - \vec{x}_{3} (+_{*})$$

$$\vec{B} = \frac{1}{c} \left[\vec{n} \times \vec{R} \right]$$

$$\frac{9}{x_0(+1)}$$

$$\frac{7}{x_0(+1)}$$

$$\frac{7}{x_0(+1)}$$

$$\frac{7}{x_0(+1)}$$

$$\frac{7}{x_0(+1)}$$

$$\vec{S} = \frac{1}{\mu_o} \left[\vec{E} \times \vec{B} \right]$$

moving charge: | R-B-R | > is the Absteurce to the charge at moment to (got constant velocity). various 13 - dependent factors come Irons "changing the grame". The Ferm is the radiation $\frac{q}{4\pi 2} \frac{1}{(1-\vec{p}\cdot\vec{n})^3} \frac{1}{CR} \vec{n} \times [\vec{n}-\vec{p}] \times \vec{\beta}$ the energy Itus: dE = limp S.n,
ardt R.son S= E×B I (E × n × E) · N = E cho Ross $=\frac{9^{2}}{16\pi^{2}}\left(\overrightarrow{n}\times(\overrightarrow{n}-\overrightarrow{p})\times\overrightarrow{p}\right)$ $=\frac{9^{2}}{16\pi^{2}}\left(\overrightarrow{n}\times(\overrightarrow{n}-\overrightarrow{p})\times\overrightarrow{p}\right)$ $=\frac{9^{2}}{16\pi^{2}}\left(\overrightarrow{n}\times(\overrightarrow{n}-\overrightarrow{p})\times\overrightarrow{p}\right)$ Non-oelectivistic limit:

[B] LCI

[B= 2]

 $\frac{d\xi}{dsdt} = \frac{9^2}{16\pi^2 \xi_0 c} \left[\vec{n} \times \vec{\beta} \right]^2$

 $\frac{dP}{dR} = \int dR \sin^2\theta \frac{9^2 |\vec{B}|^2}{16 \pi^2 \epsilon_0 c} = \frac{16 \pi^2 \epsilon_0 c}{16 \pi^2 \epsilon_0 c} = \frac{16 \pi$

 $\begin{bmatrix}
\frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{2}{3}
\end{bmatrix} = \frac{9^2 \left| \frac{2}{3} \right|}{6\pi \epsilon_0 c}$

Larmor Pormula

relativistle case it is In the important to distinguish the radioatton in the grame of the particle: emitted $\frac{d\xi}{dxdt'} = \frac{d\xi}{dxdt} \frac{dt}{dt'} \frac{dt'}{dt'} = \frac{1}{1 - \vec{\beta} \cdot \vec{N}}$ doll

13/21 1-3·0 ->0

· Rectilinear motion:

BII ps $\frac{q^2}{16\pi^2} \frac{(\vec{n} \times (\vec{n} - \vec{p}) \times \vec{p})^2}{(1 - \vec{n} \cdot \vec{p})^6}$

 $\frac{18}{1000} = \frac{9}{1000} = \frac{1}{1000} = \frac{$

total power: $d\xi = \frac{9^2 |3|^3}{6 \pi \epsilon_0 c}$ $\xi = \frac{1}{1-13^2}$

Derbuartion?

$$\int \frac{10 \sin^3 \theta}{(1-\beta \cos \theta)^5} = \int \frac{4x(1-x^2)}{(1-\beta x)^5} = \frac{4}{3} \frac{1}{(1-\beta^2)^3}$$

Consider

$$\beta \rightarrow 1$$
. $\delta \rightarrow \infty$, all radiation way $\theta \sim 0$
 $\delta \sim \frac{1}{12(1-\beta)}$: $2\delta^2 \sim \frac{1}{1-\beta}$

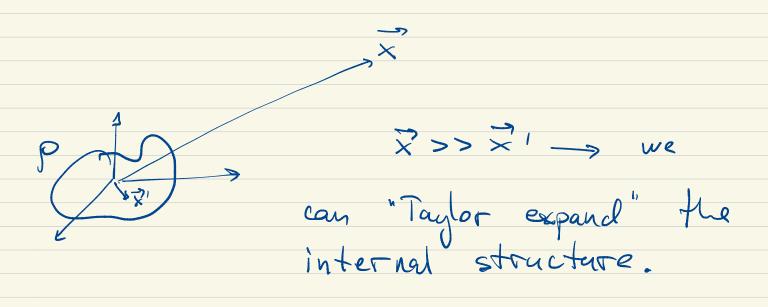
$$\frac{5!u^2\theta}{(1-\beta\cos\theta)^5}$$
 $\frac{8^2}{(1-\beta(1-\frac{0^2}{2}))}$

$$=\frac{2}{(\frac{1}{28^2}+\frac{9}{2})^5}=\frac{2}{(1+8^20^2)^5}$$

$$\frac{d\Sigma}{d\Omega dt} = \frac{29^{2}}{17^{2} \cdot 2000} \left(\frac{|\vec{p}|^{2}}{1 + (08)^{2}} \right)^{5}$$

Multipole Expansion

· Review of multi-ddmensional Taylor Joo mula two variables: J(xy) = $=\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{N-k}}_{N-k}}_{N-k}}_{N-k}\underbrace{\underbrace{k}}_{N-k}\underbrace{\underbrace{\underbrace{N-k}}_{N-k}\underbrace{N-k}\underbrace{\underbrace{N-k}}_{N-k}\underbrace{\underbrace{N-k}}_{N-k}\underbrace{N-k}\underbrace{\underbrace{N-k}}_{N-k}\underbrace{N-k}\underbrace{N-k}\underbrace{N-k}_{N-k}\underbrace{N-k}\underbrace{N-k}_{N-k}\underbrace{N-k}\underbrace{N-k}_{N-k}\underbrace{N-k}\underbrace{N-k}\underbrace{N-k}\underbrace{N-k}_{N-k}\underbrace{N-k$ 2^n terms $(x_1 \equiv x_1, x_2 \equiv 5)$ n. have k Dy derivatives Any dimensolar: n-tensor n-tensor $g(\vec{x}) = \sum_{n=0}^{\infty} \frac{x_{1} \cdot x_{2} \cdot x_{1}}{n!} \partial x_{1} \cdot \partial x_{1} \cdot \partial x_{2}$



$$\Phi(\vec{x}) = \frac{1}{4\pi\epsilon_s} \int_{-\vec{x}'}^{3} \frac{1}{|\vec{x} - \vec{x}'|}$$

Let us start By Taylor expanding the Green's Junetion:

$$\frac{1}{|X-X|} = \sum_{N=0}^{\infty} \frac{1}{|X-X|} \frac{1}{|X-X|} = \sum_{N=0}^{\infty} \frac{1}{|X-X|} \frac{1}{|X-X|} = \sum_{N=0}^{\infty} \frac{1}{|X-X|} \frac{1}{|X-X|} = \sum_{N=0}^{\infty} \frac{1}{|X-X|} \frac{1}{|X-X|} = 0$$

$$= \sum_{n=0}^{\infty} \frac{X_{i_{n}}^{2n} - X_{i_{n}}^{2n}}{|X|^{2n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{X_{i_{n}}^{2n} - X_{i_{n}}^{2n}}{|X|^{2n+1}}$$

Time
$$(\vec{x}) = |\vec{x}|^{2n+1} \frac{\partial}{\partial x_{i_1}} \frac{\partial}{\partial x_{i_2}} |\vec{x} - \vec{x}|$$
The image of the second of the second

$$T_{ii} \approx \Delta_{x'} = 0$$

$$(\vec{x} \rightarrow \vec{x}') = 0$$

$$(\vec{x} \rightarrow \vec{x}')$$

$$T_{i_1...i_n} (\vec{x}) = (2n-1).! \times_{i_1} \times_{i_2} \times_{i_n} -$$

$$- A_{i_1...i_n},$$

where tensor A contains at least one knowler Si;

$$T_i = x_i$$

· Stopped here

We would like to expand the expression

$$\int_{0}^{3} \frac{P(x')}{|\vec{x}-\vec{x}'|} = \frac{|\vec{x}|}{|\vec{x}-\vec{x}'|}$$

but so gar it is not clear which integrals of JpCi) xi xi xi uill or will not contribute because of the structure of T(x).

We then use the Johnson trick:

$$A \sim \delta_{ii}$$

$$X_{i_1} \times X_{i_2} \cdots \times X_{i_n} T_{i_2} \cdots T_{i_n} T_{i_n} = 0$$

$$= \left(\frac{\chi_{12}^{1} \chi_{12}^{1}}{\chi_{12}^{1}} \frac{\chi_{13}^{1}}{\chi_{12}^{1}} \frac{\chi_{13}^{1}}{\chi_{12}^{1}} \frac{\chi_{13}^{1}}{\chi_{12}^{1}} \frac{\chi_{13}^{1}}{\chi_{13}^{1}} \frac{\chi_{13}^{1}}{\chi_{13}^{1}}$$

$$=\frac{\operatorname{Pinnin}(\overline{x}^{1})}{(2n-1)!!}\left(\overline{\operatorname{Pinnin}}(\overline{x}^{2})+A_{i_{1}\dots i_{n}}(\overline{x}^{2})\right)$$

$$\varphi(z) = \frac{1}{4\pi\epsilon_0} \int dz \, \varphi(x) \times$$

$$\frac{x_{i_1} - x_{i_1}}{|x|^{2n+1}} = \frac{x_{i_1} - x_{i_2}}{|x|^{2n+1}}$$

$$=\frac{1}{4\pi\epsilon_{0}}\int_{N=0}^{3}\frac{1}{x^{2}}\int_{N=0}^{\infty}\frac{1}{2\pi}\int_{N=0}^{\infty}\frac{$$

Since
$$\int_{\alpha}^{\alpha} dx' x'^{n} \sim \alpha'$$
 $\int_{\alpha}^{\alpha} dx' x'^{n} \sim \alpha'$

 $lag{a}$ $lag{$

Let us derive the corresponding electore fields:

$$\varphi^{(i)} = \frac{1}{4\pi\xi_0} \frac{\partial^{(i)} \dot{\chi}}{|\chi|^3} \Rightarrow$$

$$\vec{E}^{(1)} = \frac{1}{4\pi\epsilon_0} \left(\frac{\vec{Q}^{(1)}}{1\times 1^3} + \frac{3\vec{X}(\vec{Q}^{(0)}\vec{X})}{1\times 1^5} \right)$$

Magnetostatocs

Since the Green's Jemetton for the vector potential is very similar we can use the similar techniques:

$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int_{-1}^{3} \vec{S}(\vec{x}') dx' \frac{\vec{S}(\vec{x}')}{|\vec{x} - \vec{x}'|}$$

We will not don've the all-orders expression, but just work at the leading orders:

$$A:=\frac{\mu_0}{4\pi} \times \int d^3x' \, 5(x') +$$

$$+ \frac{x_i}{|x|^3} \int_{\mathbb{R}^3} dx_i \, \Sigma_i(x_i) \, x_i'$$

Charge conservation, $\vec{J} \cdot \vec{5} + \vec{5} = 0 = >$

$$\int x_{i} d_{j} S_{j} = 0 \implies \int \partial_{j} (x_{i} S_{j}) - V$$

$$\int S_{i} = 0 \implies \int S_{i} = 0$$

$$V$$

No magnetic monopoles $\overrightarrow{P} \cdot \overrightarrow{P} = 0$
We can also show that
$$\int d^{2}x (x_{i} S_{j} + x_{j} S_{i}) = 0$$

$$V = \frac{1}{2} x_{i} \int d^{3}x (S_{i}(x) x_{j}' - S_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{j}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x (\overrightarrow{S}_{i}(x) x_{i}' - \overrightarrow{S}_{i}(x) x_{i}') = \frac{1}{2} \int d^{3}x ($$

$$= \frac{1}{2} \int d^3x | \vec{x} \times \vec{y} \times \vec{y} = \frac{1}{2} \left(\int d^3x | \vec{x} \times \vec{y} \times \vec{y} \right) \times \vec{x}$$

$$\vec{M}(x) \sim \text{magnetisation}$$

$$\vec{m} \sim \text{magnetic moment}$$

$$\overline{A}^{(1)} = \frac{\mu_0}{4\pi} \frac{\overline{M} \times \overline{X}}{|\overline{X}|^3} + O(|X|^{-2})$$

$$B^{(i)} = \overline{\nabla} \times A^{(i)} = \dots = \frac{1}{\sqrt{11}} \cdot \frac{3\vec{n} \cdot (\vec{m} \cdot \vec{n}) - \vec{m}}{|\vec{x}|^3}$$

Note the similarity:

$$\vec{E}^{(1)} = \frac{1}{4\pi\epsilon_0} \left(\vec{Q}^{(1)} \cdot \vec{N} \right) - \vec{Q}^{(1)}$$